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Symmetrical Rigid Top with One Point Fixed

Descrivtion;

In this example, LATDYN is used to simulate the motion of a

symmetrical rigid top in a uniform gravitational field when one point

on the axis of symmetry fixed in space. The mass of the top is 1.0

and principal moments of inertia are (0.1875, 0.1875, 0.3) and are

defined with respect to a reference frame located at the C. G.

Initially, the top lies in the global y-z plane and is tilted 30 degrees

from the global Z-axis as shown in Fig. 1.1. Location of the C.G. in

global coordinates is ( 0.0, -0.5, 0.8660254 ). The top is given an

initial angular velocity of 35.0 rad/sec about its axis of symmetry

and released to start the motion.

Z

¥

X

Figure 1.1 Rigid Top in Uniform Gravity Field

Mg..tl.ed.ta._

A LATDYN model of the top is shown in Fig. 1.2. The rigid top is

modeled using the RBODY command with the OFFSET option. Since

the linear displacement of one point of the top is fixed, it can be

modelled using three SDFC commands or a BALLJOINT command.



The latter, however, requires an addition grid point to be defined

and six SDFCs to ground it, therefore it is not recommended for this

case. After a rigid body is defined using the RBODY command,

MASSPROP and ADMASS commands must be given to add a mass

property to the system. If the mass property are not included, a

non-positive definite matrix will be created on execution and a run

time error will occur.

Top Z r_

':__ #G2 Gravity

Y

//#G1

X

Figure 1.2

Inout Data File:

LATDYN Model of The Top

TITLE: SPINNING RIGID TOP IN UNIFORM GRAVITY FIELD

$
$ Define simulation control parameters

$

INTEG: EXPLICIT(0.5)

TIMESPAN: 0.0 6.0

TIMESTEP: 5.0E-4

PRINT: STEP(50 GLOBAL 50 GLOBAL 0 0 0)

PLOT: STEP(10)

$

$ Define global position of grid points

$
GRIDPT: #GI 0.0 0.0 0.0

GRIDPT: #G2 0.0 -0.5 0.866025403
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$
$ Define rigid body and its mass properties

$
RBODY: TOP #G1 #G2 OFFSET

MASSPROP: MASI 1.0 0.0 0.0 0.0 0.1875 0.1875 0.3 0.0 0.0 0.0

AXES: AX1 ORIGIN(0.0,-0.5,0.866025403)&

AXPTS (X, 1.0,0.5,0.866025403,Z,0,- 1,1.732050808)

ADMASS: #G2 MAS1 AXI

$
$ Define constraints to fix the translational motion of the TOP

$
SDFC: FIXI #GI X 0.0

SDFC: FIY1 #G1 Y 0.0

SDFC: FIZI #GI Z 0.0

$
$ Define initial conditions

$
VELOCITY: #G2 0.0 0.0 0.0 0.0 -17.5 30.31088913

$
$ Define a gravity field

$
R EFVECT:RA 1,RCOORD(0,0,- 1 ,GLOB AL),FIXGLO

GRAVITY: CON STANT(9.8065,R A1 )

Results:

Selected simulation results are displayed in Figs. 1.3-1.5 Figure

1.3 shows the trajectory of the C. G. on X-Y plane. Figure 1.4 shows

the Z location history of the C. G. The results are compared with

exact solutions (shown in dotted line) obtained by solving the

governing ordinary differential equation. Figure 1.5 shows the

angular velocity of the top about the Z axis.
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Ex_tmple 2

Description:

Rigid Slider-Crank Mechanism

The slider-crank mechanism shown in Fig. 2.1 consists of four

components, the crank, the connecting rod, the slider and the ground

body. The mechanism set in the x-y plane. Ttiree one degree-of-

freedom hinges are used to connect the ground body and the crank,

the crank and the connecting rod, and the connecting rod and the

slider. The slider is constrained to translate only in the x direction.

Initially, both the crank and the connecting rod are horizontal and

the crank is given an initial angular velocity of 124.8 rad/sec (about

1200 rpm).

Z

Y

CRANK _CTING ROD

7///

///

SLIDER

Figure 2.1 A Slider-Crank Mechanism

Modeling:

A LATDYN model of the rigid slider-crank mechanism is shown

in Fig. 2.2. Six grid points are defined. Both the crank and the

connecting rod are modeled using RBODY commands each with two

grid points, while both the slider and the ground bodies are each



defined using one grid point. The ground body is constrained using

the FIX command. Three revolute joints are defined to connect

bodies. Masses are added to each moving rigid body using ADMASS
command.

Since both the crank and the connecting rod are modeled as

rigid bodies, the system has only 1 degree-of-freedom. By modeling

the hinges as revolute joints and constraining the motion of the slider

using a translational joint, there are a total of 26 constraint

equations in the system ( 5 constraints for each revolute and

translational joints). On the other hand there are 24 generalized

coordinates ( 6 for each component) in the system. This implies that

there are 3 redundant constraint equations among those defined. In

the simulation, LATDYN detects and removes the 3 redundant

constraints at the begining of the simulation.

Y

#G1

#G6
I MAS1 ]

_I#G2

#G3_k X

[MAS, I

LMAS1 ]

,/
#G4

#G5

X

Figure 2.2 LATDYN model of the Rigid Slider-Crank Mechanism

Innut Data File:

TITLE: RIGID SLIDER-CRANK MECHANISM

$
$ Define simulation control parameters

$
INTEG: EXPLICIT(0.5)

TIMESPAN: 0.0 0.2

TIMESTEP: 1.0E-4

PRINT: STEP(20 GLOBAL 20 GLOBAL 0 0 0)
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PLOT: STEP(10)

$

$ Define global position of grid points

$
GRIDPT: #GI 0.0 0.0 0.0

GRIDPT: #G2 6.0 0.0 0.0

GRIDPT: #G3 6.0 0.0 0.0

GRIDPT: #G4 18.0 0.0 0.0

GRIDPT: #G5 18.0 0.0 0.0

GRIDPT: #G6 0.0 0.0 0.0

$
$ Define rigid body and its mass properties

$
RBODY: CRANK #G2 #Gi OFFSET

RBODY: ROD #G3 #G4 OFFSET

MASSPROP: MASI 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0

AXES: AX1 ORIGIN(0.0,0.0 0.0) AXPTS(X,1.0,0.0,0.0,Z,0,0.0,1.0)

ADMASS: #G2 MAS1 AXI

ADMASS: #G3 MASI AX1

ADMASS:#G5 MAS1 AX1

$
$ Define reference points

$
REFPT: #R1 6.0 0.0 1.0 GLOBAL

REFPT: #R2 18.0 0.0 1.0 GLOBAL

REFPT: #R3 0.0 0.0 1.0 GLOBAL

$
$ Define constraints between rigid bodies

$
HINGEJOINT: HINGE1 #G2 #G3 POINT(#RI)

HINGE JOINT: HINGE2 #G4 #G5 POINT(#R2)

HINGEJOINT: HINGE3 #G1 #G6 POINT(#R3)

TRANSJOINT: TRANS1 #G5 #G6

FIX: FIX6 #G6

$
$ Define initial conditions

$
VELOCITY: #G2 0.0 748.8 0.0 0.0 0.0 124.8

VELOCITY: #G3 0.0 748.8 0.0 0.0 0.0 -62.4

Results:

8



Figures 2.3-2.5 show the plotted results of the simulation at the

slider, comparing with the results from the DADS codes[l]. Identical

results would be obtained if revolute joint between the crank and

the connecting rod, and the joint between the connection rod and the

slider were modeled as a cylindrical joint and balljoint, respectively.

However, in this case the model doesn't form a redundant constraint

system.

J

"1

Displacement of the Slider
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Figure 2.4 Velocity of the Slider

Figure 2.5 Acceleration of the Slider
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Rfference"

1. DADS User's Manual, Computer Aided Design Software, Inc., P. O.

Box 203, Oakdale, Iowa 52319, 1987.
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Example J Rigid Governor Mechanism

Descrivtion;

The governor mechanism shown in Fig. 3.1 is composed of a

shaft, 2 balls, 2 arms, 2 couplers and a collar, not including ground.
Arms that are attached to the balls are connected to the shaft

through revolute joints whose axes are perpendicular to the shaft

and parallel to each other. The collar is connected to the shaft by a

translational joint that it can slide along the shaft. Couplers that

connect the ball arm and the collar are modeled as massless rigid

links. The shaft is connected to the ground body by a revolute joint

whose hinge axis is along the y axis, thus allowing the shaft to rotate.

Initially, the mechanism is given an angular velocity of 4 rad/sec.

Arm 1

Shaft

Arm 2

Ball 1

Coupler'_

Zj 3round

Collar

t)

Ball 2

×

Figure 3.1 A Governor Mechanism

 d_o..a.ttJ.a 

A LATDYN model is shown in Fig. 3.2. All the rigid bodies are

modeled using the RBODY command with the OFFSET option. Bodies
denoted as BALL I and BALL 2 each consist of a ball and an arm

combination having three grids, one at the ball, one at the other end

of the arm and one at the coupler to arm connection point. To

12



properly define the moments of inertia for each body, an AXES
command is used to define the principal axes. ADMASS commands
are then used to give mass property to the bodies. Massless coupler
constraints between the BALLs and the collar are imposed using the
DISTLINK commands.

Y

Z

Figure 3.2 LATDYN model of the Governor

Input Data File:

TITLE: GOVERNOR MECHANISM

$
$ Define simulation control parameters

$
INTEG: EXPLICIT(0.5)
TIMESPAN: 0.0 6.0

TIMESTEP: 1.0E-2

PRINT: STEP(5 GLOBAL 5 GLOBAL 0

PLOT: STEP(I)

$
$ Define global position of grid points

$
GRIDPT: #G1 0.0 0.0 0.0

GRIDPT: #G2 0.0 0.2 0.0

GRIDPT: #G3 0.11314 0.08686 0.0

o o)
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GRIDPT: #G4 -0.11314 0.08686 0.0
GRIDPT: #G5 0.0 0.05 0.0
GRIDPT: #G6 0.0565685 0.1434315 0.0
GRIDPT: #G7 -0.0565685 0.1434315 0.0
GRIDPT: #G8 0.0 0.2" 0.0
GRIDPT: #G9 0.0 0.2 0.0
GRIDPT: #G10 0.0 0.0 0.0
$
$ Define rigid body and its mass properties

$
RBODY: ARM2 #G8 #G6 #G3 OFFSET

RBODY: ARM1 #G9 #G7 #G4 OFFSET

RBODY: SHAFT #G2 #G10 OFFSET

MASSPROP: MAS1 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0

MASSPROP: MAS2 200.0 0.0 0.0 0.0 25.0 50.0 25.0 0.0 0.0 0.0

MASSPROP: MAS3 1.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0

MASSPROP: MAS4 1.0 0.0 0.0 0.0 0.1 0.I 0.1 0.0 0.0 0.0

MASSPROP: MAS5 1.0 0.0 0.0 0.0 0.15 0.125 0.15 0.0 0.0 0.0

AXES: AXI ORIGIN(0.0,0.0,0.0) AXPTS(X,1.0,0.0,0.0,Z,0,0.0,1.0)

AXES: AX2 ORIGIN(0.0,0.2,0.0) AXPTS(X,1.0,0.2,0.0,Z,0,0.2,1.0)

AXES: AX3 ORIGIN(0.11314,0.08686,0.0)&

AXPTS (X, 1.0,0.08686,0.0,Z,0.11314,0.08686,1.0)

AXES: AX4 ORIGIN(-0.11314,0.08686,0.0)&

AXPTS(X, 1.0,0.08686,0.0,Z,-0.11314,0.08686,1.0)

AXES: AX5 ORIGIN(0.0,0.05,0.0) AXPTS(X,1.0,0.05,0.0,Z,0,0.05,1.0)

ADMASS:#G1 MAS1 AX1

ADMASS: #G2 MAS2 AX2

ADMASS: #G3 MAS3 AX3

ADMASS: #G4 MAS4 AX4

ADMASS: #G5 MAS5 AX5

$
$ Define reference points

$
REFPT: #R1 0.0 1.0 0.0

REFPT: #R2 0.0 0.2 1.0

$
$ Define constraints between bodies

$
HINGEJOINT: HINI #G1 #G10 POINT(#RI)

HINGEJOINT: HIN2 #G2 #G8 POINT(#R2)

HINGEJOINT: HIN3 #G2 #G9 POINT(#R2)

TRANSJOINT: TRAN1 #G5 #G2

DISTLINK: DIS1 #G5 #G7

14



DISTLINK: DIS2 #G5 #G6

FIX: FIX1 #G1

$
$ Define initial conditions

$
VELOCITY: #G2 0.0

VELOCITY: #G8 0.0

VELOCITY: #G9 0.0

VELOCITY: #G5 0.0

0.0 0.0 0.0 4.0 0.0

0.0 0.0 0.0 4.0 0.0

0.0 0.0 0.0 4.0 0.0

0.0 0.0 0.0 4.0 0.0

Results:

Partial results of the simulation are shown in Figs. 3.3-3.5.

Figure 3.3 shows the x coordinate of ball 1, Figs. 3.4 and 3.5 show

the displacement and acceleration of the collar. Identical results are

obtained with the DADS codes[l].

Figure 3.3 X coordinate of Ball 1

15



• |l

I RTI_'H

J

II. 11,-

III. 114-

l.lZ-

_.l Ill

I.I,4
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Figure 3.5 Acceleration of the Collar
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1. DADS User's Manual, Computer Aided Design Software, Inc., P. O.
Box 203, Oakdale, Iowa 52319, 1987.
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Exi_mple 4 Spin-up Beam

Descrintion:

Mathematical modeling of spinning elastic bodies is usually

simplified to a cantilever beam built into a rigid base that moves and

rotates with a specific motion. To represent the flexiblity of the

beam, deformation modes from linear finite element analysis are

used. In linear theory, transverse vibration of a beam is calculated

without considering axial forces. In some cases, it is not possible to

ingore the effect of axial forces on bending vibration of beams. When

the beam is spinning, so called geometric stiffening effects that are

due to the presence of axial (centrifugal) forces come into play.

Coupling between centrifugal forces and bending moment makes a

rapidly spinning beam stiffer than is predicted by linear theory.

Experience has shown that linear analysis techniques are inaccurate

for predicting deflection of such spinning beams.

In this example, a slender beam with length 8.0 meter, is spin-

up from rest to a constant angular velocity in th_ x-z plane. The
function to spin-up the beam is written as

Q_COs[ 1.0-cos (2_t)], t<Ts
Ts Ts

Q=0.0, _>-Ts

where O_s is the final angular velocity, Ts is the time to reach the

velocity, and Q is the angular acceleration of the hinge. Ts and O_s are

taken as 15.0 and 4.0 in the example.

18



Figure 4.1 A Spin-Up Beam

 l.¢a_c.lin. 

A LATDYN model of the spin-up beam is shown in Fig. 4.2. The beam
is modeled with two beam elements. Two conditions are defined to

switch on/off the constraint on angular acceleration of grid point 1 in

the y direction. Variables QI to Q8 are used to calculate the flexural

deflection of the beam, (measured with respect to the rigid body

configuration, as shown in Fig. 4.3). Qll and Q12 are defined as the

value of Q when t is less than and greater than 15, respectively.

Y

Z

A _ X
v w v

#G1 #G2 #G3

Figure 4.2 LATDYN model of the Spin-up Beam
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[Q2,Q31
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Figure 4.3 Calculation of Tip Deflection

][lnl_ut Data File:

TITLE: SPIN-UP BEAM

$

$ Define simulation control parameters

$

INTEG: EXPLICIT(0.5)
TIMESPAN: 0.0 25.0

TIMESTEP: 5.0E-4

PRINT: STEP(100 GLOBAL 100 GLOBAL 0 0 0)

PLOT: TIME(2.0E-2)

CHKGYR: ON

$

$ Define globa| position of grid points
$

GRIDPT: #G1 0.0 0.0 0.0

GRIDPT: #G2 4.0 0.0 0.0

GRIDPT: #G3 8.0 0.0 0.0

$

$ Define reference point

$
REFPOINT:#R2 0.0 1.0 0,0

$

$ Define beam properties

$

20



MATPROP: MAT 6.895E10

BEAMPROP: BEAM MAT 73E-6

$
$ Define beam element

$
FMEMBER:#M1 SINGLE(#GI,#G2) POINT(#R2) BEAM

FMEMBER:#M2 SINGLE(#G2,#G3) POINT(#R2) BEAM

$
$ Define constraints

$
SDFC: FIX #G 1 X 0.0

SDFC: FlY #G 1 Y 0.0

SDFC: FIZ #G 1 Z 0.0

SDFC: FWX #G1 WX 0.0

SDFC: FWZ #G 1 WZ 0.0

$
$ Define Q variable and condition labels

$
SET: Q11=(4./15.)*(1.-COS(2.'3.14159"T/15.))

SET: Q 12=0.

Cl: T.LT.15.

C2: T.GE.15.

$
$ Constrain angular acceleration of grid point 1

$
SDFC: FWY1 #GI WY QI 1 ? C1

SDFC: FWY2 #GI WY QI2 ? C2

$
$ Define Q variables to calculate tip deflection

$
SET:

SET:

SET:

SET:

SET:

SET:

SET:

SET:

Q1 =YAW(#G1)

Q2=8.0*COS(Q 1)

Q3=-8.0*SIN(Q1)

Q4=Q2-XLOC(#G3)

Q5=Q3-ZLOC(#G3)

Q6=SQRT(Q4*Q4+Q5*Q5)

Q7=-Q2*Q5+Q3*Q4

Q8=-SIGN(1.0D00,Q7)*Q6

2.6519E10 2766.67

8.2181E-9 8.2181E-9 1.6436E-8

Results:

Figure 4.4 show the angular acceleration of the beam at the

root, which is constrained in the simulation. Figure 4.5 shows the

21



flexural deflection of the beam tip, comparing with result from Ref. 1.

Figure 4.6 shows the bending moment of the beam at its mid-point.

I_ IA. ql_! ) . T|N[ (Da_l)

_lz-

Figure 4.4 Angular Acceleration of the Beam at the Root
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Figure 4.5 Tip Flexurai Deflection of the Beam
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Figure 4.6 Bending Moment of the Beam at Its Mid-point

Reference:

1. Wu, S. C. and Haug, E. J.," Geometric Nonlinear Substructuring for

Dynamics of Flexible Mechanical System", International Journal for

Numerical Methods In Engin.eering, Vol. 26, No. 10, pp. 2211-2226,
1988.
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Planar Space Crane with Two Booms

Descrivtion:

A space crane is assumed to operate in a plane and consist of

two truss booms joined to each other at a hinge. The actuators

capable of driving the crane were located so as to provide a torque

about the hinge. A schematic diagram of the set-up is shown in Fig.
5.1. In the LATDYN model, the booms are modeled as continuous

beams. Each boom is represented by one beam finite element. The

torque actuation is represented by two linear actuators supplying a

force at a points offset from the neutral axis of the equivalent beam.

The beams are hinged together at an offset point as well. Element ab

(see Fig. 5.1) is modeled as a rigid member. In the simulation, one of

the linear actuators supplies a constant force of 200N for 5 seconds

while the second actuator is inactive and modeled as a linear spring.

Actuators 1_3 m

! /b

\-
1_

S'S vff_/¢f

3m

Figure 5.1 Two Booms Space Crane

 la.at..tial 
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A LATDYN model of the crane system is shown in Fig. 5.2. The
model consists of three bodies, two flexible booms and one rigid
element- Element ab in Fig. 5.1. The three bodies are jointed
together at one point, #G3(or #G9,#gl0), by two revolute joints. Each
boom is modeled using one beam element. Section contains grids
#G2, #G3, and #G4 is assumed rigid, comparing with the length of the
booms. Similarly for section contains grids #G5, #G9, and #G7. A
small mass is asumed for element ab and is lumped at #G8.

#G6

#G8

Linear

Spring

Actuator
#G7

#G4

#G3 \

#G9 _,

#_ Equivalent beams

#G1

Figure 5.2 LATDYN Model of Space Crane

Input Data File:

TITLE: LINEAR-ACTUATOR-DRIVEN TWO BOOM SPACE CRANE

$
$ Define simulation control parameters

$
INTEG: EXPLICIT(0.5)

TIMESPAN: 0.0 5.0

TIMESTEP: 1.0E-3
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PRINT: STEP(10 GLOBAL I0 GLOBAL

PLOT: STEP(10)

$
$ Define global position of grid points

$
GRIDPT: #GI 0.0 0.0 0.0

GRIDPT: #G2 0.0 10.5 0.0

GRIDPT: #G3 1.5 12.0 0.0

GRIDPT: #G4 -1.5 9.0 0.0

GRIDPT: #G5 1.5 14.2 0.0

GRIDPT: #G6 11.6 25.8 0.0

GRIDPT: #G7 1.5 16.4 0.0

GRIDPT: #G8 -1.5 13.24 0.0

GRIDPT: #G9 1.5 12.0 0.0

GRIDPT:#G10 1.5 12.0 0.0

$

o 00)

$ Define rigid body and its mass properties

$
RBODY: BOD1 #G2 #G3 #G4 OFFSET

RBODY: BOD2 #G5 #G9 #G7 OFFSET

RBODY: BOD3 #G8 #G10 OFFSET

MASSPROP: MASI 1.0 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0

AXES: AXI ORIGIN(-1.5,13.24,0.0) AXPTS(X,0.5,13.24,0.0,Z,-

1.5,13.24,1.0)

ADMASS:#G8 MASI AX1

$
$ Define reference points

$
REFPT: #R1 1.0 0.0 0.0

REFPT: #R2 1.5 12.0 1.0

$
$ Define constraints between bodies and invoke constraint

$ stabilization technique

$
FIX: FIX1 #GI

HINGEJOINT: REV1 #G3 #G10 POINT(#R2)

HINGEJOINT: REV2 #G3 #G9 POINT(#R2)

ABSTB: 5.0 5.0

$
$ Define beam element and its material properties

$
MATPROP: MAT 3.0290E7 3.6808E6 2.5148

BEAMPROP: BEAM MAT 1.0 1.78 1.78 3.56
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FMEMBER:#MI SINGLE(#GI,#G2) POINT(#RI)BEAM
FMEMBER:#M2 SINGLE(#G5,#G6) POINT(#R1) BEAM
$
$ Define force elements

$
LINSPRING: SPRING #G4 #G8 18.0E5 0.0

LINACTUATOR: ACTUATOR #G8 #G7 200.0

Results:

Figure 5.3 shows the trajectory of the tip, due to the constant

actuator. Figure 5.4 shows the x displacement at the upper end of the

vertical boom, while Fig. 5.5 shows the bending moment of the same

boom at the clamped end.
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Figure 5.3 Trajectory of the Tip
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Flexible Slider-Crank Mechanism

Description:

This problem is similar to that of Example 2. tlowever, instead

of modeling the connecting rod as a rigid body, it is modeled as a

flexible body.

Y

L_

Z
SLIDER

///

Figure 6.1 A Slider-Crank Mechanism

Modeling:

A LATDYN model of the flexible slider-crank mechanism is

shown in Fig. 6.2. Two beam elements are used to model the flexible

connecting rod. Totally five grid points are defined in the model.

Grid point 1 and 2 are on the same rigid body- the crank. A revolute

joint is defined between grid point 1 and 5, while grid point 5 is

grounded. Grid point 4 represents the slider which is constrained to
move in the x direction using a TRANSJOINT command, ttinges at

both ends of the connecting rod are defined using HINGEPT

commands, with reference points defining the orientation of the

hinge axes. Q variables are used to calculate the deflection of the rod

at its midspan.
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Figure 6.2 LATDYN model of the Flexible Slider-Crank
Mechanism

!nr_ut Data File:

TITLE: PLANAR SLIDER CRANK MECHANISM

$
$ Define simulation control parameters
$
CHKGYR:ON

INTEG:EXPLICIT(.5)

TIMESPAN: 0., .06

TIMESTEP:0.200E-4

PRINT: STEP( I00 GLOBAL 100 GLOBAL 0 0 0)

PLOT: STEP(20)

$
$ Define global position of grid points
$
GRIDPT: #G l, 0. ,0. ,0.

GRIDPT: #G2, 6. ,0. ,0.

GRIDPT: #G3, 12., 0. ,0.

GRIDPT: #G4, 18. , 0., 0.

GRIDPT: #G5, 0. ,0. ,0.

$
$ Define reference points

$
REFPOINT:#R 1, 6.,0., I .,GLOBAL,FIXGLO

REFPOINT:#R2, 18.,0., 1 .,GLOBAL,FIXGLO

REFPOINT:#R3, 6., 1 .,0.,GLOBAL,FIXGLO
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REFPOINT:#R4, 12., I.,0.,GLOBAL,FIXGLO

REFPOINT:#R5, 0.,0., 1 .,GLOBAL,FIXGLO

$
$ Define hinges

$
HINGEPT:#G2H 1,0.,POINT(#R 1 )

HINGEPT:#G4H 1,0.,POl NT(#R2)

$
$ Define beam element and its material properties

$
MATPROP: FLEXMAT, 3.0E7, I. 15E07,7.331E-4

BEAMPROP:FLEXB M,FLEXMAT,.049087385,1.91747E-4,1.91747E-4,3.83494E-4

FMEMBER:#M 1 ,SINGLE(#G2H 1 ,#G 3 ),POINT(#R3),FLEXB M

FMEMBER: #M2,SINGLE(#G3,#G4H1),POINT(#R4),FLEXBM

$
$ Define initial conditions

$
VEL:#G 1,0._0.,0.,0.,0., 1.248E+02

VELHINGE:#G2H 1 ,- 187.2

VEL:#G3,0.,374.4,0.,0.,0.,-62.4

VELHINGE :#G4H 1,-62.4

$
$ Define rigid body and its mass properties

$
RB ODY:CRANK,#G 1 ,#G2,OFFSET

$
$ Define constraints

$
SDFC:FIXINX #G5 ,X, 0.

SDFC:FIXINY #G5 ,Y, 0.

SDFC:FIXINZ #G5 ,Z, 0.

SDFC:FIXINWX #G5 ,WX, 0.

SDFC:FIXINWY #G5 ,WY, 0.

SDFC:FIXINWZ #G5 ,WZ, 0.

SDFC:FIXINWZI #GI ,WZ, 0.

TRANSJOINT: TRI, #G4,#G5

!IINGEJO1NT:TESTJOINT,#G I,#G5,POINT(#R5)

$
$ Define Q variables to calculate deflection at midspan of the

$ connecting rod

$
SET: Q21 =XLOC(#G2)

SET: Q22=YLOC(#G2)
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SET: Q31=XLOC(#G3)
SET: Q32=YLOC(#G3)
SET: Q41=XLOC(#G4)
SET: Q42=YLOC(#G4)
SET: Q51=0.5"(Q21 +Q41)-Q31
SET: Q52=0.5*(Q22+Q42)-Q32
SET: Q53=DSQRT(Q51 *Q51+Q52*Q52)/! 2.
CLI: Q52.GT.0.
SET: Q53=-Q53 ? C1

Results;

Figure 6.3 shows the deflection of the connecting rod at its

midspan, normalized with respect to its length. Similar result is

obtained as reported in Ref. 1. Figure 6.4 shows the bending moment

of the connecting rod at its midspan. Figure 6.5 show the
acceleration of the slider.

-111.

[-II

Figure 6.3 Normalized Deflection
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F.,XItlII.IlIg...._ Robot Constrained to Follow a Square Trajectory

Descrintion:

The end of a grounded two-arm robot system is constrained to

follow a square trajectory as shown in Fig. 7.1. Both arms are
modeled as flexible bodies. The system is driven such that the end

starts from rest at one corner and moves to and stops at an adjacent

corner. Therefore, constraints on the end are different for all sides of

the trajectory. The acceleration of the end along one side of the

square is

Q=_ [ t--T-sin2_ (2T_d-i]' t<T

where L is the length of a side and T is time to move along one side.

Y

Trajectory

Figure 7.1 A Two-Arm Robot

A robot model is shown in Fig. 7.2. Each robot arm is modeled

as one beam element. Two hinges are defined to model the joints of

the robot, by using the HINGEPT commands. Four conditions are

defined using CL command to impose constraints for moving the end

about the square trajectory.
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#G1

#G2

#G3

Z

Figure 7.2 LATDYN model of the Robot System

lnnut Data File:

TITLE: A ROBOT ARM CONSTRAINED TO FOLLOW A SQUARE TRAJECTORY
$
$ Define simulation control parameters
$
INTEG: EXPLICIT(0.5)
TIMESPAN: 0.0 4.0

TIMESTEP: 1.0E-3

PRINT: STEP(100 GLOBAL 100 GLOBAL 0 0 0)
PLOT: STEP(10)

$
$ Define global position of grid points
$
GRIDPT: #G1 0.0 0.0 0.0

GRIDPT: #G2 2.0 2.0 0.0

GRIDPT: #G3 2.818 0.0 0.0

$

$ Define reference points
$
REFPOINT:#R 1 0.0 0.0 1.0

REFPOINT:#R2 2.0 2.0 2.0

REFPOINT:#R3 0.0 1.0 0.0

$
$ Define hinges
$
HINGEPT:#G1H1 0.0 POINT(#R1)

HINGEPT:#G2H1 0.0 POINT(#R2)
$
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$ Define beam element and its material properties

$
MATPROP: MAT 70000E5 27300E6 2700

BEAMPROP: BEAM MAT 3.008575657E-4 3.45932434E-8 &

3.45932434E-8 6.918648679E-8

FMEMBER:#M1 SINGLE(#G1HI,#G2) POINT(#R3) BEAM

FMEMBER:#M2 SINGLE(#G2HI,#G3) POINT(#R3) BEAM

$
$ Define constraints to fix grid point 1

$
SDFC: FIX #G1 X 0.0

SDFC: FIY #G 1 Y 0.0

SDFC: FIZ #G1 Z 0.0

SDFC: FWX #G 1 WX 0.0

SDFC: FWY #G1 WY 0.0

SDFC: FWZ #G 1 WZ 0.0

$
$ Define constraints to"move the robot system follow the square path

$
SDFC: Q1X#G3 X Q1 ?C1

SDFC: Q1Y #G3 Y 0.0 ?C1

SDFC: Q2X #G3 X 0.0 ?C2

SDFC: Q2Y #G3 Y Q2 ?C2

SDFC: Q3X#G3 X Q3 ?C3

SDFC: Q3Y #G3 Y 0.0 ?C3

SDFC: Q4X #G3 X 0.0 ?C4

SDFC: Q4Y #G3 Y Q4 ?C4

$
$ Define Q variables and

$
SET:

SET:

SET:

SET:

CLI: T.LT.1.0

CL2:T.GE.1.0 .AND. T.LT.2.0

CL3" T.GE.2.0 .AND. T.LT.3.0

CL4:T.GE.3.0 .AND. T.LT.4.0

condition lables

Q 1 =(2.0*PI* 1.0/( 1.0" 1.0))* S IN(2.0*PI*T/1.0)

Q 2=(2.0"PI* 1.0/(1.0" 1.0))* S IN(2.0*PI*T/1.0)

Q3 =(2.0*PI*(- 1.0)/(1.0" 1.0))*S IN(2.0*PI*T/1.0)

Q4=(2.0*PI*(- 1.0)/(1.0" 1.0))*S IN(2.0*PI*T/1.0)

Results:
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Figure 7.3 displays the prescribed trajectory of the end of the

robot arm, while figures 7.4 and 7.5 display the angular

displacements of hinge 1 and hinge 2 with the time.
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Figure 7.3 Trajectory of End
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Example 8 Slewing Control Analysis of a Flexible Steel Beam

Description:

A flexible steel beam slewing through a 45 degrees while

simultaneously suppressing vibration motion is modeled. The slewing

motion and vibration suppresion of the system is provided by a

torque motor located at the root of the beam. The design of an active

controller of such a system has been on reported by Juang, Horta and

Robertshaw in Ref. 1. Their design attempts to suppress vibrations

by the completion of the maneuvor. The torque , as stated in [1], is a

function of the slewing angle, the bending strain in the beam, and the

root slewing angular velocity and acceleration. The angular velocity

and acceleration is included to model the actuator dynamics. The

feedback controller uses bending strain at three positions along the

beam ( root, 22% and 50% of the beam length), and the root angular

position, and angular velocity.

X

Z

l>Y

Figure 8.1 A Slewing Steel Beam

M.0..d.c/J.a 

A LATDYN model of the slewing beam is shown in Fig. 8.2. Two

finite elements are used to model the steel beam. A hinge is defined
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at the root, grid point 1, using the HINGPT command. Q variables are
used to define the control law through the use of SET command. A
block diagram of the control law is shown in Fig. 8.3. Variables Q1 to
Q4 are defined as the feedback gains for slewing angular position and
bending strains at the root, 22% and 50% of the beam length.
Variables Q5 and Q6 are defined as scaling factors, while Q7 is

defined as half the beam thickness. Variables Q8 to Q10 are defined

as bending strains at the three measured locations. The slewing

angular position and the three strains are converted to output

voltage, which gives variables Qll to Q14. Variable Q15 is the input

signal to the motor, which is the summation of the feedback gains

times output voltages. Variables Q16 to Q19 are defined as motor

constants. Variable Q20 is defined as the net motor torque applied to

the beam. The ROTACTUATOR command apply the torque at the root

hinge. The second terms on the right-hand-side of Q20 comes from

motor dynamics. As given in Ref. 1 the actuator dynamics has two

parts, one which depends on the motor angular velocity and the

other which depends on the angular acceleration. The second part is

not included in Q20, but is accounted for by modifying the system's

mass matrix through the ADMASS command.
Z

X

#G1

#G2 #G3

Figure 8.2 LATDYN model of the Slewing Beam
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HD: Hinge angular Displacement

Seclion A-A

Figure 8.3 Block Diagram of the Control Design

lnout Data File:

TITLE: SLEWING STEEL BEAM

$

$ Define simulation control parameters
$

INTEG: EXPLICIT(0.5)

TIMESPAN: 0.0 5.0

TIMESTEP: 5.0E-5

PRINT: STEP(100 GLOBAL 100 GLOBAL

PLOT: STEP(100)
CHKGYR: ON

$

$ Define global position of grid points

$

GRIDPT: #G1 0.0 0.0 0.0

GRIDPT: #G2 0.5 0.0 0.0

GRIDPT: #G3 1.0 0.0 0.0

$

$ Define reference points

0 00)
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$
REFPOINT:#R 1 0.0 0.0 1.0

REFPOINT:#R2 0.0 1.0 0.0

$
$ Define hinges

$
HINGEPT:#G1H1 0.0 POINT(#R1)

$
$ Define beam element and its material

$
properties

MATPROP: MAT 2.191E11 10.0 7886.17

BEAMPROP: BEAM MAT 6.0759E-5 2.9210E-8 3.2405E-12

FMEMBER:#M1 SINGLE(#G1HI,#G2) POINT(#R2) BEAM

FMEMBER:#M2 SINGLE(#G2,#G3) POINT(#R2) BEAM

$
$ Define constraints

$
SDFC: FIX #G 1 X 0.0

SDFC: FIY #G 1 Y 0.0

SDFC: FIZ #G1 Z 0.0

SDFC: FWX #G 1 WX 0.0

SDFC: FWY #G1 WY 0.0

SDFC: FWZ #G1 WZ 0.0

$
$ Define motor moment inertial and add it to left-hand-side

2.9210E-8

of the

$ equation

$
MASSPROP: MASS I 0.0 0.0 0.0 0.0 0.0 0.0 3.5596 0.0 0.0 0.0

ADDMASS: #G1HI MASS1 GLOBAL

$
$ Define Q variable to calculate strains and feedback signal

$
SET: QI= -14.82

SET: Q2= 185.20

SET: Q3= 44.99

SET: Q4= -25.43

SET: Q5= 0.17"27.0

SET: Q6= 2.64*27.0

SET: Q7= 0.04E-2

SET: Q8= Q7*((-4.0+6.0*0.0)*DEF(ZA, 1 )+(6.0*0.0-2.0)*DEF(ZB, 1 ))/0.5

SET: Q9= Q7*((-4.0+6.0*0.44)*DEF(ZA, 1 )+(6.0*0.44-2.0)*DEF(ZB, 1))/0.5

SET: Q 10= Q7"((-4.0+6.0" 1.0)*DEF(ZA, 1 )+(6.0" 1.0-2.0)*DEF(ZB, 1))/0.5

SET: Q11= Q5*( HINGE(D,#G1H1)-0.785398163 )
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SET: Q12- Q6*Q8
SET: Q13= Q6*Q9
SET: Q14= Q6*QlO
SET: Q15= QI*Q11+Q2*Q12+Q3*Q13+Q4*Q14
SET: Q16= 941.0
SET: Q17= 0.023
SET: Q18= 3.7
SET: Q19= 0.031
SET: Q20= (Q 16*Q 17/Q18)*Q 15-(Q 17*Q 19/Q 18)*Q 16*Q 16*HINGE(V,#G 1H1)
SET: Q21= (Q16*Q17/QI8)*Q15
ROTACTUATOR: TOR 1UX(#G 1H1) Q20

Results:

Figure 8.4 shows the strain at the root of the beam, while Fig.

8.5 shows the angular position of the beam root. Results from Ref. 1

are also shown in the figures. The control torque is shown in Fig. 8.6.

g(_). TII'E (l_ml)

•.-J_'Dqg)4_ I

Figure 8.4 Strain At the Root
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Figure 8.6 Torque Applied to the Beam
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Flapping Blade

DescriDtion:

A number of problems arise which make it necessary to study

the effects of flexibility on blade motion. This example involves the

affect of flexible motion on the performance, stresses occur in the

deformed blade, and interactions between the rotational speed and

the natural frequencies of the flexible blade. A simplified version of

an articulated blade is shown in Fig. 9.1. Initially, the blade is

straight and tilted 0.157 radians (9 degrees) from the horizontal,

and rotates at a constant speed. As the blade rotates, it starts to

flap up and down due to centrifugal effects. An additional

complicating factor is that due to the stiffening effect of centrifugal

force, natural frequencies of the blade vary with the blade

rotational speed.

t_

Z

t,

Flapping Blade

Inertial

Flapping Hinge

V

Centrifugal

Force

Force

M_9_a_t_U.o__
Figure 9.1 A Flapping Beam
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A LATDYN model of the flapping blade is shown in Fig. 9.2.
Four elements are used to model the blade flexibility. The flapping
hinge is defined at grid point 1, by using a HINGEPT command.
Initial orientation of the hinge axis is parallel to the global z axis, as
defined by the reference point in the HINGEPT command. The
constant rotational speed of the blade is imposed by constraining
the angular acceleration of grid point 1 using an SDFC command and
by giving an initial angular velocity using the VELOCITY command.

Y

Z

#G4

#G2_5

"- X

#G1

Figure 9.2 LATDYN Model of the Flapping Blade

Inout Data File:

TITLE: FLAPPING BLADE

$
$ Define simulation control parameters
$
INTEG: EXPLICIT(0.5)
TIMESPAN: 0.0 5.0

TIMESTEP: 1.0E-4

PRINT: STEP(100 GLOBAL 100 GLOBAL

PLOT: STEP(100)
CHKGYR: ON

$
$ Define global position of grid points
$
GRIDPT: #G1

GRIDPT: #G2

GRIDPT: #G3

GRIDPT: #G4

0.00000000

1.97540159

3.95080318

5.92620477

0.00000000

0.31271162

0.62542325

0.93813487

0 00)

0.00000000

0.00000000

0.00000000

0.00000000
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GRIDPT: #G5 7.90160636

$

$ Define reference points

$
REFPOINT:#R 1 0.0

REFPOINT:#R2 0.0

$
$ Define binge

$
HINGEPT:#G1 H1 0.0

$

1.25084650 0.00000000

POINT(#R 1 )

$ Define beam element and its material properties

$
MATPROP: MAT 6.895EI0 2.6519E10 2766.67

BEAMPROP: BEAM MAT 73E-6 8.2181E-9 8.2181E-9 1.6436E-8

SINGLE(#G 1H 1,#G2) POINT(#R2) BEAM

SINGLE(#G2,#G3) POINT(#R2) BEAM

SINGLE(#G3,#G4) POINT(#R2) BEAM

SINGLE(#G4,#G5) POINT(#R2) BEAM

FMEMBER:#M1

FMEMBER:#M2

FMEMBER:#M3

FMEMBER:#M4

$
$ Define constraints

$
SDFC: FIX #G1 X 0.0

SDFC: FlY #G 1 Y 0.0

SDFC: FIZ #G1 Z 0.0

SDFC: FWX #G1 WX 0.0

SDFC: FWY #G1 WY 0.0

SDFC: FWZ #G1 WZ 0.0

$
$ Define initial conditions

$
VELOCITY: #G1 0.0

VELOCITY: #G2 0.0

VELOCITY: #G3 0.0

VELOCITY: #G4 0.0

VELOCITY: #G5 0.0

Results:

0.0 0.00000000

0.0 -9.87700795

0.0 -19.75401590

0.0 -29.63102384

0.0 -39.50803179

0.0 5.0 0.0

0.0 5.0 0.0

0.0 5.0 0.0

0.0 5.0 0.0

0.0 5.0 0.0

In the flapping blade simulation, rotational speed of the blade

is kept constant in each simulation and gradually increased in

succeeding simulations, starting with 1 rad/sec and going up to 9

rad/sec. Frequencies are calculated from the transient response of

the simulation using a Fast Fourier Transform(FFT). Figure 9.3 shows
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the flapping bending moment of the blade at the middle of the blade
when it rotates at 5 rad/sec. Figure 9.4 shows the frequency results
from an FFT of the same blade for different rotation speeds,
compared to the solutions derived by Southwell. Excellent
agreement between the LATDYN results and the Southwell solution is

shown.

Also shown (straight lines) in Fig. 9.4 are different harmonics

of the rotor speed. As shown, the natural frequency of the first

mode intersects with the third harmonic around 8 rad/sec, fourth

harmonic around 4 rad/sec ,fifth harmonic around 3 rad/sec, and so

on for higher harmonics. A resonance may then occur when the

blade speed near these harmonics. Figure 9.5 shows that the

bending moment of the blade, when it rotates at 8 rad/sec, is

increasing with time. The frequency of the blade is about three times

the rotational speed. The magnitude of the response in Fig. 9.5 may

not increase indefinitely, but may represent a beating phenomenon

with the period of the beat depending on the closeness of 8 rad/sec

to the intersection point.
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Examole 10 Truss Deployment

Descrintion:

One bay of a three longeron truss beam (Longerons A1B1,

A2B2, and A3B3 as shown in Fig. 1) with two batten triangles is

shown in its packaged state in Fig. 10.1 and in its deployed state in

Fig. 10.2.( Lower Batten Triangle A1A2A3 and Upper Batten Triangle

B 1B2B3 ). The triangular cross-section of the bay fits inside a 1.4 m

diameter circle. The longerons are connected to batten triangles at

each corner (three corner bodies are built into each corner of the

batten triangles) by hinges. In the model, longerons are treated as

flexible while both batten triangles are assumed rigid. Initially, the

system is in its fully packaged position, as shown in Fig. 10.1. The

lower triangle is grounded and the upper triangle is constrained to

move only in the z direction and rotate about the z axis. The truss is

deployed by driving the upper triangle in the longitudial direction

without constraining its rotation along the same axis. The driving
constraint is

_-__.L__[t Tsin (T2-_)], t<TT 2n

where L is length of the longeron, T is total deployment time, and z is

the acceleration of the upper triangle in the z direction. Figure 10.2

shows the system in its fully deployed configuration.
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B3

Longeron

Upper Batten Triangle

Lower Batten Triangle

B2

Figure 10.1 Fully Retracted Truss Structure (Top View)

B3

B1 B2

A3

_ Longeron

HingeA1 Line

Lower Batten Triangle

Upper Batten Triangle

Figure 10.2 Fully Deployed Truss Structure
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Mod(_lin_:

A model of the packaged truss is shown in Fig. 10.3. By

modeling each longeron with one beam element, a total of eight grid

points are defined. The batten triangles are modeled as rigid bodies.

Grid points 1, 3, 5, and 7 are on the same rigid body- the lower

batten triangle, while grid points 2, 4, 6, and 8 are on the same rigid

body- the upper batten triangle. For grid point at the comer of

batten triangles, a hinge is defined using a HINGEPT command with a

reference point used to define the orientation of the hinge axis.

Flexible longerons are defined using FMEMBER commands. Six SDFCs

are used to ground the lower batten triangle and five SDFCs constrain

the upper so that batten triangle can only rotate about the z axis.

Translational motion of the batten in the z direction is constrained by

a Q variable which is defined as shown above. The mass of the upper

batten triangle is lumped at the center of the triangle and added to

the system by using ADMASS command.

#G4 #G7

GI

#G3

#G1 #G8

#G2

#G5

Figure 10.3

#G6

LATDYN Model of One Bay of tile Truss Structure
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Innu| Data File:

TITLE: DEPLOYING OF A TRUSS STRUCTURE

$
$ Define simulation control parameters

$
INTEG: EXPLICIT(0.5)

TIMESPAN: 0.0 1.0

TIMESTEP: 1.0E-4

PRINT: STEP(100 GLOBAL 100 GLOBAL 0 0 0)

PLOT: STEP(100)

$
$ Define global position of grid points

$
0.0 0.0 0.0

0.0 0.0 0.0

-0.606 -0.34987426 0.0

-0.233578 0.65961961 0.0

0.606 -0.34987426 0.0

-0.454457 -0.532095 0.0

0.0 " 0.699749 0.0

0.688037 -0.127522 0.0

GRIDPT: #G 1

GRIDPT: #G2

GRIDPT: #G3

GRIDPT: #G4

GRIDPT: #G5

GRIDPT: #G6

GRIDPT: #G7

GRIDPT: #G8

$
$ Define reference points

$
REFPOINT:#R 1 0.0 0.0

REFPOINT:#R3 0.311134

REFPOINT:#R4 0.413006

REFPOINT:#R5 0.0796924

REFPOINT:#R6 -0.210400

0.0

-0.2716553 0.390828

0.00449861 -0.390828

0.405278 0.390828

0.355424 -0.390828

REFPOINT:#R7 -0.390827 -0.133624 0.390828

REFPOINT:#R8 -0.202605 -0.359924 -0.390828

$
$ Define hinges

$
HINGEPT:#G3H1 0.0 POINT(#R3)

HINGEPT:#G4H1 0.0 POINT(#R4)

HINGEPT:#G5H1 0.0 POINT(#R5)

ttlNGEPT:#G6Itl 0.0 POINT(#R6)

ttlNGEPT:#G7ttl 0.0 POINT(#R7)

HINGEPT:#G8H1 0.0 POINT(#R8)

$
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$ Define beam element and its material properties
$
MATPROP: MAT 1.956E+11 6.830E+9 1.606E+3

BEAMPROP: BEAM MAT 0.2937E-3 1.232E-8 1.232E-8

FMEMBER:#M1 SINGLE(#G3HI,#G4HI) POINT(#R1) BEAM

FMEMBER:#M2 SINGLE(#G5HI,#G6H1) POINT(#R1) BEAM

FMEMBER-#M3 SINGLE(#G7HI,#G8H1) POINT(#R1) BEAM

$
$ Define rigid body and its mass properties

$
RBODY:B1 #G1 #G3 #G5 #G7 OFFSET

RBODY:B2 #G2 #G4 #G6 #G8 OFFSET

MASSPROP: MASS1 0.3029 0.0 0.0 0.0 0.5567E-1 0.1854E-l&

0.7421E-1 0.0 0.0 0.0

ADDMASS: #G2 MASS1 GLOBAL

$
$ Define constraints

$
SDFC: FIX #G 1 X 0.0

SDFC: FlY #G 1 Y 0.0

SDFC: FIZ #G1 Z 0.0

SDFC: FWX #G 1 WX 0.0

SDFC: FWY #G1 WY 0.0

SDFC: FWZ #G 1 WZ 0.0

SDFC: IX #G2 X 0.0

SDFC: IY #G2 Y 0.0

SDFC: IZ #G2 Z Q1

SDFC: WX #G2 WX 0.0

SDFC: WY #G2 WY 0.0

$
$ Define Q variable to deploy the system

$
SET: Q1 =(2.0"3.141596" 1.076/(1.0' 1.0))*SIN(2.0"3.141596"T/1.0)

2.464E-8

Results:

Figures 10.4-10.5 show bending moments of the longeron in

the y and z direction at the lower end connecting with the lower

triangle, with the z displacement of the upper triangle. Figure 10.6

show the twisting moment of the longeron.
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Figure 10.4 Longeron Bending Moment in the y Direction
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Figure 10.6 Twisting Moment of the Longeron
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